15. Monothioethylene Glycol. Part IV. Aryl β -Hydroxy- and β -Chloro-ethyl Sulphides.

By George Baddeley and G. MACDONALD BENNETT.

A FURTHER series of substituted aryl β -hydroxyethyl sulphides has been prepared (cf. J., 1927, 1666) and converted into the corresponding chloro-sulphides, the substituents being of as wide a range of polar character as possible.

Of the thiophenols required for the preparations, the p-halogenated compounds were obtained from the corresponding amines by the Leuckart reaction through the xanthic esters.

Some of the derived sulphoxides, and a number of the sulphones, are also described.

The vesicant or irritant action of these compounds is slight, but it is very noticeable with the sulphones and particularly in p-nitrophenyl- β -chloroethylsulphone.

Each aryl β -hydroxyethyl sulphide was prepared by adding ethylene chlorohydrin to a solution of the thiol in a slight excess of aq. KOH at 60—70° and heating for a short time on the water-bath; the product was removed and dried (K₂CO₃) in Et₂O and recovered. Conversion into the chloro-sulphide was effected by SOCl₂ in C₅H₅N and CCl₄ (cf. Part III, *loc. cit.*), but with compounds halogenated in the nucleus fusion with PCl₅ was necessary.

Oxidation to the sulphoxides was carried out with H_2O_2 in AcOH, to the sulphones with aq. KMnO₄ in presence of MgSO₄. For the synthesis of β -hydroxyethyl sulphones the requisite sulphinic acid was dissolved in aq. KOH, evaporated in vac., and heated for 2—8 hr. at 100—120° with ethylene chlorohydrin. Steam was then passed to remove volatile matter, and the product separated and recrystallised.

Mesityl β -hydroxyethyl sulphide, from s-trimethylthiophenol, solidified and formed colourless needles from light petroleum; m. p. 25° (Found : S, 16·5. C₁₁H₁₆OS requires S, 16·3%). It was converted quantitatively into mesityl β -chloroethyl sulphide, which crystallised from MeOH in colourless needles with an oblique extinction; m. p. 44° (Found : Cl, 16·55; C, 61·9; H, 7·2. C₁₁H₁₅ClS requires Cl, 16·55; C, 61·6; H, 7·0%). The sulphoxide crystallised from light petroleum in small rhomb-shaped crystals with an oblique extinction; m. p. 76° (Found : Cl, 15·1. C₁₁H₁₅OClS requires Cl, 15·4%), and the sulphone, when crystallised from dil. MeOH, formed colourless needles with an oblique extinction; m. p. 60·5° (Found : Cl, 14·2. C₁₁H₁₅O₂ClS requires Cl, 14·4%).

p-Chlorophenyl β -hydroxyethyl sulphide, after keeping at 100°/25 mm. for 1 hr., formed a light brown oil (Found : Cl, 19.0. C₈H₉OClS requires Cl, 18.8%). It was converted by fusion with PCl₅ into p-chlorophenyl β -chloroethyl sulphide, which formed large colourless plates with a straight extinction (from light petroleum); m. p. 34° (Found : Cl, 34.2. C₈H₈Cl₂S requires Cl, 34.3%). The corresponding sulphone was prepared through the sulphinic acid obtained from *p*-chloroaniline by Gattermann's method, the β -hydroxyethyl sulphone being converted without purification into the β -chloro-sulphone. It separated from light petroleum in minute white prisms with an oblique extinction; m. p. 96° (Found : Cl, 29.9. C₈H₈O₂Cl₂S requires Cl, 29.7%).

p-Bromophenyl β -hydroxyethyl sulphide, prepared similarly, was a dark brown oil (Found : Br, 34.4. C₈H₉OBrS requires Br, 34.3%), converted by PCl₅ into p-bromophenyl β -chloroethyl sulphide, large, almost colourless plates, m. p. 39°, from light petroleum (0.1861 g. pptd. 14.79 c.c. N/10-AgNO₃. C₈H₈ClBrS requires 14.53 c.c.). The *sulphone*, prepared through an oily β -hydroxyethyl sulphone, separated from light petroleum as a microcryst. powder, m. p. 109° (0.1372 g. pptd. 9.58 c.c. N/10-AgNO₃. C₈H₈O₃ClBrS requires 9.67 c.c.).

p-Iodophenyl β -chloroethyl sulphide was produced by the action of PCl₅ on the oily hydroxysulphide, and crystallised from MeOH in minute plates with oblique extinction; m. p. 54° (0·1503 g. gave 0·1900 g. mixed halides. Found by action of Cl₂: Cl, 12·3; I, 41·6. C₈H₈CllS requires 0·1905 g.; Cl, 11·9; I, 42·5%).

2: 4-Dichlorothiophenol.—The diazonium solution obtained from dichloroaniline (20 g.) in conc. H_2SO_4 (40 c.c.) and H_2O (240 c.c.) at 0—5° (8.6 g. NaNO₂ in 60 c.c. H_2O) was mixed with borax (240 g. in 1.5 l. H_2O) and added to potassium xanthate (30 g. in a little H_2O) at 60—70°. The brown oily xanthic ester was removed in Et_2O , recovered, and hydrolysed (13 g. NaOH in 130 c.c. spirit) for 1 hr., the EtOH distilled off, the solution acidified, and the dichlorothiophenol distilled in steam, being obtained as an oil which solidified; m. p. 20°. It was oxidised by K_3FeCy_6 to 2: 4: 2': 4'-tetrachlorodiphenyl disulphide, colourless prisms, m. p. 82.5° (Found : Cl, 39.9. $C_{12}H_6Cl_4S_2$ requires Cl, 39.8%), and converted at 120° by BzCl into the benzoate, which crystallised from petroleum in minute, pale brown needles with straight extinction; m. p. 97° (Found : Cl, 25.2. $C_{13}H_8OCl_2S$ requires Cl, 25.1%). The thiophenol was converted through an oily hydroxy-sulphide into 2: 4-dichlorophenyl β -chloroethyl sulphide, an almost colourless oil, b. p. 218°/15 mm. (Found : Cl, 42.9. $C_8H_7Cl_3S$ requires Cl, 44.1%). [A tendency for β -chloroethyl sulphides to give slightly low values of Cl content after distillation has been previously noticed (e.g., Bennett, J., 1921, 119, 424).] The sulphoxide crystallised from petroleum in colourless needles, m. p. 96.5° (Found : Cl, 41.2. $C_8H_7OCl_3S$ requires Cl, 41.4%).

From 2 : 5-dichlorothiophenol, m. p. 23° (Gebauer-Fülnegg and Figdor, Monatsh., 1927, 48, 627), which gave a disulphide, forming colourless microscopic prisms, m. p. 81.5° (Found : Cl, 39.8. Calc. : Cl, 39.9%), 2 : 5-dichlorophenyl β-hydroxyethyl sulphide was obtained, colourless plates, m. p. 32°, from dil. MeOH (Found : Cl, 31.8. $C_8H_8OCl_2S$ requires Cl, 31.8%). 2 : 5-Dichlorophenyl β-chloroethyl sulphide is a colourless oil, b. p. 176°/15 mm. (Found : Cl, 43.0. $C_8H_7Cl_2S$ requires Cl, 44.1%). Its sulphoxide crystallised from light petroleum in thin colourless plates with a high double refraction; m. p. 68° (Found : Cl, 41.0; C, 37.1; H, 3.0. $C_8H_7OCl_2S$ requires Cl, 41.4; C, 37.3; H, 2.7%).

2:4:6-Trichlorothiophenol was prepared from trichloroaniline, diazotisation being conducted in conc. H_2SO_4 for several days. The solution was diluted and poured into a large excess of potassium xanthate solution slowly at 50°. The thiophenol was subsequently isolated as a colourless solid, m. p. 60° (Found : Cl, 49.7. $C_6H_3Cl_3S$ requires Cl, 49.9%), readily oxidised to 2:4:6:2':4':6'-hexachlorodiphenyl disulphide, microscopic white crystals, m. p. 165°, from xylene (Found : Cl, 50.2. $C_{12}H_4Cl_6S_2$ requires Cl, 50.3%), and furnishing a benzoate, which crystallised from xylene in small colourless elongated plates with a straight extinction; m. p. 170° (Found : Cl, 33.0. $C_{13}H_7OCl_3S$ requires Cl, 32.8%). By condensation with ethylene chlorohydrin 2:4:6-trichlorophenyl β -hydroxyethyl sulphide was obtained, which crystallised from light petroleum in colourless prisms with high double refraction and an oblique extinction, m. p. 41° (Found : Cl, 41.2. $C_8H_7OCl_3S$ requires Cl, 41.4%), and was converted by PCl₅ into 2:4:6-trichlorophenyl β -chloroethyl sulphide, rhomb-shaped plates with an oblique extinction (from MeOH), m. p. 71° (Found : Cl, 51.4; C, 35.0; H, 2.5. $C_8H_6Cl_4S$ requires Cl, 51.4; C, 34.8; H, 2.2%).

p-Anisyl β -hydroxyethyl sulphide, from *p*-anisidine, separated from petroleum in minute white plates, m. p. 41° (Found : S, 17·3. C₉H₁₂O₂S requires S, 17·4%). The derived p-anisyl β -chloroethyl sulphide was isolated as a pale yellow oil, b. p. 110°/1 mm., which darkened and evolved HCl on long keeping (Found : Cl, 17·7. C₉H₁₁OClS requires Cl, 17·5%).

From thio-α-naphthol, an oily β-hydroxyethyl sulphide was prepared and converted at once into α-naphthyl β-chloroethyl sulphide, a pale brown oil which suffered slight decomp. on distillation (Found : Cl, 15.6. $C_{12}H_{11}CIS$ requires Cl, 15.9%). The sulphone was separately synthesised from α-naphthalenesulphinic acid [m. p. 86°, prepared by reduction of the sulphonyl chloride (16 g.) with Na₂SO₃ (60 g.) and NaOH (4 g.) in 200 c.c. H₂O]. α-Naphthyl-β-hydroxyethylsulphone, after crystallising once from dil. MeOH and once from H₂O, formed silvery plates, m. p. 122° (Found : S, 13.5. $C_{12}H_{12}O_3S$ requires S, 13.6%). α-Naphthyl-β-chloroethylsulphone crystallised from dil. MeOH in stout prisms, m. p. 74° (Found : Cl, 13.9. $C_{12}H_{11}O_2CIS$ requires Cl, 13.95%). β-Naphthyl β-hydroxyethyl sulphide, from thio-β-naphthol, formed silvery matted plates, m. p. 64°, from light petroleum (Found : S, 15.6. $C_{12}H_{13}OS$ requires S, 15.7%). When allowed to react gently with PCl₅ (1.25 mols.), it yielded β-naphthyl β-chloroethyl sulphide, which crystallised from EtOH in plates with a high refraction and straight extinction; m. p. 53° (Found : Cl, 16·1. $C_{12}H_{11}$ ClS requires Cl, 15·9%). When the above hydroxy-sulphide was fused with an excess of PCl₅, nuclear chlorination also occurred with production of ?-chloro- β -naphthyl β -chloroethyl sulphide, small crystals (from EtOH), m. p. 52°, depressed to 45° in admixture with the preceding compound (Found : Cl, 28·0. $C_{12}H_{10}Cl_2S$ requires Cl, 27·7%).

From β -naphthalenesulphinic acid, β -naphthyl- β -hydroxyethylsulphone was obtained, which crystallised from warm H₂O in minute silvery plates, m. p. 108° (Found : S, 13.6. C₁₂H₁₂O₃S requires S, 13.6%), and yielded with PCl₅ β -naphthyl- β -chloroethylsulphone, microscopic crystal aggregates, m. p. 100°, from MeOH (Found : Cl, 13.8. C₁₂H₁₁O₂ClS requires Cl, 13.95%).

p-Nitrophenyl- β -chloroethylsulphone, prepared by oxidation of the sulphide (Part III), formed colourless microscopic prisms, m. p. 128° (Found : Cl, 14.0. C₈H₈O₄NCIS requires Cl, 14.2%). Phenyl γ -chloropropyl sulphide, oxidised with H₂O₂, yielded a sulphoxide which did not crystallise and was further oxidised with KMnO₄ to the *sulphone*, colourless needles (from light petroleum), m. p. 26° (Found : Cl, 16.0. C₉H₁₁O₂CIS requires Cl, 16.2%).

THE UNIVERSITY, SHEFFIELD.

[Received, December 5th, 1932.]